CHAPTER 6 & 7 REVIEW

- · Describe the plasma membrane
- What is the difference between channel protein, transport protein, recognition proteins, receptor proteins, electron transfer proteins
- · What organelles are part of the endomembrane system
- · The functions of the organelles
- 4 differences between animal and plant cells
- · Prokaryote vs. eukaryote
- · What substances can easily pass through the plasma membrane
- 3 types of passive transport
- 6 types of active transport
- · Osmotic pressure and osmotic potential
- · Hypotonic vs. hypertonic vs. isotonic solutions
- The cellular structure that is involved in producing ATP during aerobic respiration is the
 - a. nucleus
 - b. nucleolus
 - c. chloroplast
 - d. mitochondrion
 - e. endoplasmic reticulum
- Which of the following cellular structures are common to both prokaryotes and eukaryotes?
 - a. ribosomes
 - b. nucleoli
 - c. chloroplasts
 - d. mitochondria
 - e. Golgi bodies
- 3. The plasma membrane consists principally of
 - a. proteins embedded in a carbohydrate bilayer
 - phospholipids embedded in a protein bilayer
 - c. proteins embedded in a phospholipid bilayer
 - d. proteins embedded in a nucleic acid bilayer
 - e. proteins embedded in a polymer of glucose molecules
- When the concentration of solutes differs on the two sides of a membrane permeable only to water,
 - a. water will move across the membrane by osmosis
 - water will move across the membrane by active transport
 - water will move across the membrane by plasmolysis
 - water will move across the membrane by facilitated diffusion
 - solutes will move across the membrane from the region of higher concentration to the region of lower concentration
- All of the following characterize microtubules EXCEPT:
 - a. They are made of the protein tubulin.
 - b. They are involved in providing motility.
 - c. They are organized by basal bodies or centrioles.
 - d. They develop from the plasma membrane.
 - They make up the spindle apparatus observed during cell division in animals.

- 6. Lysosomes are
 - a. involved in the production of fats
 - b. involved in the production of proteins
 - c. involved in the production of polysaccharides
 - d. often found near areas requiring a great deal of energy (ATP)
 - e. involved in the degradation of cellular substances
- 7. Mitochondria
 - a. are found only in animal cells
 - b. produce energy (ATP) with the aid of sunlight
 - are often more numerous near areas of major cellular activity
 - d. originate from centrioles
 - e. are microtubule organizing centers
- The movement of molecules during diffusion can be described by all of the following EXCEPT:
 - Molecular movements are random.
 - Net movement of solute molecules is from a region of higher concentration to a region of lower concentration.
 - Each molecule moves independently of other molecules.
 - Solute molecules always move down the concentration gradient.
 - Net movement of gas molecules is from a region of higher concentration to a region of lower concentration.
- 9. Plant and animal cells differ mostly in that
 - a. animal cells have mitochondria
 - b. animal cells have centioles
 - the flagella and cilia of animal cells have a "9+2" doublet microtubule construction
 - d. plant cells have cell walls made from cellulose
 - e. plant cells have ribosomes attached to the endoplasmic reticulum

- 10. A smooth endoplasmic reticulum exhibits all of the following activities EXCEPT:
 - a. assembling amino acids to make proteins
 - b. manufacturing lipids
 - c. manufacturing hormones
 - d. breaking down toxins
 - e. breaking down toxic cellular by-products
- All of the following are known to occur in cell walls EXCEPT
 - a. actin
 - b. chitin
 - c. polysaccharides
 - d. cellulose
 - e. peptidoglycans
- 12. A saturated suspension of starch is enclosed in a bag formed from dialysis tubing, a material which water can pass, but starch cannot. The bag with the starch is placed into a beaker of distilled water. All of the following are expected to

occur EXCEPT:

- There will be a net movement of water from a hypotonic region to a hypertonic region.
- There will be a net movement of solute from a hypertonic region to a hypotonic region.
- c. There will be a net movement of water from a region of higher concentration of water to a region of lower concentration of water.
- The dialysis bag with its contents will gain weight.
- e. No starch will be detected outside the dialysis bag.
- 13. A tube covered on one end by a membrane impermeable to sucrose is inverted and half filled with distilled water. It is then placed into a beaker of 10% sucrose to a depth equal to the midpoint of the tube. Which of the following statements is true?
 - a. The water level in the tube will rise to a level above the water in the beaker.
 - b. The water level in the tube will drop to a level below the water in the beaker.
 - c. There will be no change in the water level of the tube, and the water in the tube will remain pure.
 - d. There will be no change in the water level of the tube, but sucrose will enter and mix with the water in the tube.
 - e. The concentration of the sucrose solution will increase.
- 14. Which of the following is/are not found in a prokaryotic cell?
 - a. ribosomes
 - b. plasma membrane
 - c. mitochondria
 - d. a and c
 - e. a, b, and c
- 15. Resolving power of a microscope is
 - a. the distance between two separate points
 - b. the sharpness or clarity of an image
 - c. the degree of magnification of an image
 - d. the depth of focus on a specimen's surface
 - e. the wavelength of light

- 16. Which of the following is not a similarity among the nucleus chloroplasts and mitochondria?
 - a. They contain DNA.
 - They are bound by a double phospholipid bilayer membrane.
 - c. They can divide to reproduce themselves.
 - They are derived from the endoplasmic reticulum system.
 - e. Their membranes are associated with specific proteins.
- The pores of the nuclear envelope provide for the movement of
 - a. proteins into the nucleus
 - b. ribosomal components out of the nucleus
 - c. mRNA out of the nucleus
 - d. enzymes into the nucleus
 - e. all of the above
- 18. The ultrastructure of a chloroplast could be seen best using
 - a. transmission electron microscopy
 - b. scanning electron microscopy
 - c. phase contrast microscopy
 - d. cell fractionation
 - e. darkfield microscopy
- The largest number of bound ribosomes most likely would be found in a call
 - a. with a high metabolic rate
 - b. that produces secretory proteins
 - c. with many cilia
 - d. that produces steroids
 - e. that detoxifies poisons
- 20. Which structure is not considered to be part of the endomembrane system?
 - a. perioxisome
 - b. smooth ER
 - c. nuclear envelope
 - d. lysosomes
 - e. Golgi apparatus
- 21. A growing plant cell elongates primarily by
 - a. increasing the number of vacuoles
 - b. synthesizing more cytoplasm
 - c. taking up water into its central vacuole
 - d. synthesizing more cellulose
 - e. producing a secondary cell wall
- 22. The innermost portion of a mature plant cell wall is
 - a. primary cell wall
 - b. secondary cell wall
 - c. middle lamella
 - d. plasma membrane
 - e. plasmodesmata
- 23. Contractile elements of muscle cells are
 - a. intermediate filaments
 - b. centrioles
 - c. microtubules
 - d. actin filaments
 - e. fibronectins

- 24. Microtubules are components of all of the following EXCEPT
 - a. centrioles
 - b. the spindle apparatus for separating chromosomes in cell
 - c. tracks along which organelles can move using motor molecules
 - d. flagella and cilia
 - e. the pinching apart of the cytoplasm in animal cell division
- 25. Of the following, which is probably the most common route for membrane flow in the endomembrane system?
 - a. rough ER ---- Golgi ---- lysosomes ---- vesicles ---plasma membrane
 - b. rough ER ---- transitional ER --- Golgi --- vesicles --plasma membrane
 - nuclear envelope ---- rough ER ---- Golgi ---- smooth ER --- lysosomes
 - d. rough ER --- vesicles --- Golgi ---- smooth ER --plasma membrane
 - e. smooth ER ---- vesicles ---- Golgi ---- vesicles ---peroxisomes
- 26. Proteins to be used within the cytosol are generally synthesized
 - a. by ribosomes bound to rough ER
 - b. by free ribosomes
 - c. by the nucleolus
 - d. within the Golgi apparatus
 - e. by mitochondria and chloroplasts
- 27. Plasmodesmata in plant cells are similar in function to
 - a. desmosomes
 - b. tight junctions
 - c. gap junctions
 - d. the extracellular matrix
 - e. integrins
- 28. In a cell fractionation procedure, the first pellet formed would most likely contain
 - a. the extracellular matrix
- d. lysosomes

b. ribosomes

- e. nuclei
- c. mitochondria
- 29. Glycoproteins and glycolipids are important for
 - a. facilitated diffusion
 - b. active transport
 - c. cell-cell recognition
 - d. cotransport
 - e. signal-transduction pathways
- 30. A single layer of phospholipid molecules coats the water in a beaker. Which part of the molecules will face the air?
 - a. the phosphate groups
 - b. the hydrocarbon tails
 - c. both head and tail because the molecules are amphipathic and will lie sideways
 - d. the phospholipids would dissolve in the water and not form a membrane coat
 - e. the glycolipid region

- 31. Which of the following is not true about osmosis?
 - a. It increases free energy in a system.
 - b. Water moves from hypotonic to a hypertonic solution.
 - c. Solute molecules bind to water and decrease the water available to move.
 - d. It increases the entropy in a system.
 - e. There is no net osmosis between isotonic solutions.
- 32. Support for the fluid mosaic model of membrane structure
 - a. the freeze-fracture technique of electron microscopy
 - b. the movement of proteins in hybrid cells
 - c. the amphipathic nature of membrane proteins
 - d. both a and b
 - e. all of the above
- 33. A freshwater Paramecium is placed into salt water. Which of the following events would occur?
 - a, an increase in the action of its contractile vacuole
 - b. swelling of the cell until it becomes turgid
 - c. swelling of the cell until it lyses
 - d. shriveling or crenation of the cell
 - e. diffusion of salt ions into the cell
- 34. Ions diffuse across membranes down their
 - a. electrochemical gradient
 - b. electrogenic gradient
 - c. electrical gradient
 - d. concentration gradient
 - e. osmotic gradient
- 35. The fluidity of membranes in a plant in cold weather may be maintained by
 - a. increasing the number of phospholipids with saturated hydrocarbon tails
 - b. activating a H pump
 - c. increasing the concentration of cholesterol in the membrane
 - d. increasing the proportion of integral proteins
 - e. increasing the number of phospholipids with unsaturated hydrocarbon tails
- 36. A plant cell placed in a hypotonic environment will
 - a. plasmolyze
 - b. shrivel
 - c. become turgid
 - d. become flaccid
 - e. lyse
- 37. Which of the following is not true of the carrier molecules involved in facilitated diffusion?
 - a. They increase the speed of transport across a membrane.
 - b. They can concentrate solute molecules on one side of the membrane.
 - They have specific binding sites for the molecules they transport.
 - d. They may undergo a conformational change upon binding of solute.
 - They may be inhibited by molecules that resemble the solute to which they normally bind.

- 38. The membrane potential of a cell favors the
 - a. movement of cations into the cell
 - b. movement of anions into the cell
 - c. action of an electrogenic pump
 - d. movement of sodium out of the cell
 - e. action of a proton pump

39. Cotransport may involve

- a. active transport of two solutes through a transport protein
- passive transport of two solutes through a transport protein
- c. ion diffusion against the electrochemical gradient created by an electogenic pump
- d. first and second messengers in a signal-transduction pathway
- e. transport of one solute against its concentration gradient in tandem with another that is diffusing down its concentration gradient
- 40. Exocytosis involves all of the following EXCEPT
 - a. ligands and coated pits
 - b. the fusion of a vesicle with the plasma membrane
 - a mechanism to transport carbohydrates to the outside of plant cells during the formation of cell walls
 - d. a mechanism to rejuvenate the plasma membrane
 - e. a means of exporting large molecules
- The proton pump in plant cells is the functional equivalent of an animal cell's
 - a. cotransport mechanism
 - b. sodium-potassium pump
 - c. contractile vacuole for osmoregulation
 - d. receptor-mediated endocytosis of cholesterol
 - e. signal-transduction pathway

42. Pinocytosis involves

- a. the fusion of a newly formed food vacuole with a lysosome
- receptor-mediated endocytosis and the formation of vesicles
- the pinching in of the plasma membrane around droplets of external fluid
- d. pseudopod extension as vesicles move along the cytoskeleton and fuse with the plasma membrane
- e. the accumulation of specific large molecules in a cell
- 43. Watering a houseplant with too concentrated a solution of fertilizer can result in wilting because
 - a. the uptake of ions into plant cells makes the cells hypertonic
 - the soil solution becomes hypertonic, causing the cells to lose water
 - c. the plant will grow faster than it can transport water and maintain a proper water balance
 - d. diffusion down the electrochemical gradient will cause a disruption of membrane potential and accompanying loss of water
 - e. the plant will suffer fertilizer burn due to a caustic soil solution

Use the U-tube setup to answer questions 44-46.

The solutions in the two arms of this U-tube are separated by a membrane that is permeable to water and glucose but not to sucrose. Side A is filled with a solution of 2.0 M sucrose and 1.0M glucose. Side B is filled with 1.0M sucrose and 2.0M glucose.

44. Initially, the solution in side A, with respect to that in side B

is

- a. hypotonic
- d. lower
- b. hypertonic
- e. higher
- c. isotonic
- 45. After the system reaches equilibrium, what changes are observed?
 - a. The water level is higher in side A than in side B.
 - b. The water level is higher in side B than in side A.
 - c. The molarity of glucose is higher in side A than in side B.
 - d. The molarity of sucrose has increased in side A.
 - e. Both a and c have occurred.
- 46. During the period before equilibrium is reached, which molecule(s) will show net movement through the membrane?
 - a. water
- d. water and sucrose
- b. glucose
- e. water and glucose
- c. sucrose

Use the following key for the next five questions. Each answer in the key may be used once, more than once, or not at all.

- (A) Active transport
- (D) Facilitated diffusion
- (B) Bulk flow (C) Osmosis
- (E) Plasmolysis
- 47. Movement of solutes across a plasma membrane from a region of higher solute concentration to a region of lower solute concentration with the aid of proteins.
- 48. Movement of water across a membrane from a region of higher concentration of water to a region of lower concentration.
- 49. Movement of water out of a cell resulting in the collapse of the plasma membrane.
- 50. Movement of urine through the urinary tract.
- 51. Movement of solutes across a plasma membrane requiring the addition of energy.

What are the appropriate cellular organelle or structure?

- 52. Transport membranes and products to various locations
- 53. Infolding of mitochondrial membrane with attached enzyme
- 54. small sacs with specific enzymes for particular metabolic
- 55. stack of flattened sacs inside chloroplasts
- 56. anchoring structure for cilia and flagella
- 57. semifluid medium between nucleus and plasma membrane
- 58. system of fibers that maintains cell shape, anchors organelles
- 59. connection between animal cells that creates impermeable layer
- 60. membrane surrounding central vacuole of plant cells